
Version R01

Reference Manual





Copyright Notice

ZooCADA-Mod Version R01 Reference Manual
Copyright © 2024 Adena Scientific Limited.

All rights reserved.

This documentation and the accompanying software are copyrighted and all
rights are reserved to Adena Scientific Limited.  No part of this document or
the accompanying software may be reproduced or distributed, either in whole
or in part, by any means whatsoever, for any purpose, except as expressly
permitted by the accompanying Software License Agreement.

Revision History

Original Version 1.0    26-07-2024

P O Box 756
Waikato Mail Centre

5 Pukeko Place
Te Kowhai,  New Zealand

Sales and Technical Support

E-mail: service@adena.co.nz
Telephone: + 64 7 829-7063

All trademarks referred to in this document are the property of the trademark’s owners.





Software License Agreement

Please read this before using your copy of the software.
This document is a legal agreement between you and Adena Scientific Limited.  Any use of the software that
accompanies this license indicates your acceptance of the conditions contained in this license.

If you do not agree to these conditions you must destroy all digital copies of the software and
documentation in your possession.  If a physical software package was supplied containing the software,
printed documentation and/or any other components, you must return it intact to the place of purchase.

Interpretation
The following meanings apply to terms used in this Software License Agreement;
 Device: The computer equipment used operate this software, irrespective of its form, and includes desktop

PCs, laptops, tablets, dataloggers, and any other device that is capable of running the software.
 Installed: The software is considered to be installed when it has been loaded into memory or other storage,

either permanent or temporary, from where the software can be operated.
 Software: The computer program(s) supplied to you accompanied by this Software License Agreement.
 Modification: Means the addition or deletion of program instructions, reallocation of memory variables,

and/or reallocation of datalogger input locations.  Changing of the calibration coefficients of measurement
instructions in datalogger programs is not considered to be a program modification.

Proprietary Rights
The software and all accompanying documentation are proprietary products of Adena Scientific Limited and are
protected under the copyright laws of New Zealand and by international treaties.  Ownership of the software and
all copies, modified or not, and any merged portions thereof remains at all times with Adena Scientific Limited.

Grant of License
The software and accompanying documentation are licensed to you by Adena Scientific Limited.  This means that
you have purchased the right to use the software and accompanying documentation only in accordance with the
conditions detailed in this Software License Agreement.  This license is effective from the date you purchased it
until such time as it is terminated.

Single Device License
This license permits you to install the software on one device only.  You must purchase a separate license for each
device on which the software is to be installed.  The software may be transferred from one device to another
provided that the software is permanently removed from one device before it is installed onto another.

Annual License Fee
Your license to use the software is conditional upon your payment of an ongoing annual license fee.  This fee
entitles you to receive, during the period for which the license fee has been paid, any applicable software updates
to the software that are made available from time to time by Adena Scientific Limited, and unlimited product
support by telephone or email.  Site specific software customisation and software installation are not included.
The annual license fee is billed in advance, monthly for NZ customers or annually for International customers,
commencing twelve months after the date of your original purchase of the software.

Annual Maintenance Plan Fee
An optional annual maintenance plan may be available, for control systems that utilise the software, to provide an
annual, on site, inspection and testing regime designed to verify that the control system is operating according to
our documented specifications and to identify any maintenance work that may be necessary.



Software License Agreement

Installation of software updates issued by Adena Scientific Limited is included in the plan.  Site specific software
customisation, equipment repair or replacement, and the upgrade or maintenance of software that may be part of
an overall system but which is not manufactured by Adena Scientific Limited is not included in the plan.
The annual maintenance plan fee is additional to the annual license fee and is billed in advance, monthly for NZ
customers or annually for International customers, commencing twelve months after the date of your original
purchase of the software.

Backup and Working Copies
You may make one copy of the original software and its electronic format documentation expressly for backup or
archival purposes provided that the contents of the original media are copied onto the backup media completely
and in an unaltered form complete with the copyright notice.

Modifications to the Program
If the software supplied to you includes the source code, you may make modifications to the software.  Before you
make any modifications to the software please read the “Limited Warranty” document supplied with the software.
Adena Scientific Limited accepts no liability whatsoever for any modifications that you make to the software, nor for
any consequences whatsoever that may arise from the use of such modified software.  If you modify the software
you must enter the date, your name, and the details of the modification(s) that you made, into a “Modifications”
comment section at the top of the source code to provide appropriate internal documentation and you must
clearly mark all copies of the modified software with the words “Modified Version”.

Non Permitted Uses
You may not, except as expressly permitted in this agreement;

1. copy, modify, or transfer the software, in whole or in part, electronically or otherwise, or;
2. translate, disassemble, decompile or otherwise reverse engineer the software, or;
3. rent, lease, sub-license or assign the software to any other person or organisation, or;
4. use the software for any unlawful or substantially unethical purpose.

Transfer of License
This license may be permanently transferred, by you, to another person or organisation, provided that you transfer
the original software package, and all copies of the software and accompanying documentation, to that person or
organisation.  Any such transfer must include your most recent update version and all previous versions and
terminates your license to use the software.

Termination of License
You may terminate your license to use the software at any time by either;

1. transferring it to another person or organisation as described above, or;
2. destroying the software and accompanying documentation together with all copies.

Adena Scientific Limited reserves the right to terminate your license to use the software, at our sole discretion and
without prejudice to any other rights or remedies we may have in law, in the event that the annual license fee
remains unpaid for more than three calendar months, or in any event where we become aware that you have
breached the conditions of this Software License Agreement.

Jurisdiction
This agreement will be governed and construed in accordance with the laws of New Zealand.



Limited Warranty

To the original purchaser only;
Adena Scientific Limited warrants for 12 months from the date the software is delivered to you that the software
will perform substantially the functions described in the documentation supplied with the software and that the
media on which the software is supplied will be free from defects in materials and workmanship.
Adena Scientific Limited undertakes to correct, within a reasonable period of time, any reported software error or
documentation error, or replace the distribution media the software was supplied on if it proves to be defective in
material or workmanship on an exchange basis without charge.  For the purpose of this warranty "software error"
means failure of the software to perform substantially the functions described in the documentation supplied with
the software.
Adena Scientific Limited does not warrant that operation of the software will be uninterrupted or error free, or that
all software errors will be corrected. Adena Scientific Limited accepts no responsibility for any problems caused by
changes in computer operating systems or the characteristics of computer hardware that are made after the
delivery of the software nor for any problems in the interaction of the software with other software not produced
by Adena Scientific Limited.
If Adena Scientific Limited is unable to replace defective distribution media or provide corrected software or
corrected documentation within a reasonable period of time, Adena Scientific Limited will, at its sole discretion,
either replace the software with a functionally equivalent program at no charge to you or refund the license fee of
the software. Adena Scientific Limited will have no responsibility to replace the software or refund the license fee
where a failure is caused by accident, abuse, misapplication, or where the software has been modified by you.
These are your sole and exclusive remedies for any breach of this warranty. All other liability of Adena Scientific
Limited arising directly or indirectly in connection with this warranty, the software, its use, misuse or otherwise
including (but without limitation) any loss of profit, business, revenue, goodwill or anticipated savings is hereby
excluded. This exclusion of liability applies to liability in contract and/or in tort, including negligence.
This warranty applies to the exclusion of all warranties expressed or implied including implied warranties of
merchantability and fitness for a particular purpose. No oral or written information or advice given by Adena
Scientific Limited, its employees, distributors, dealers or agents shall increase the scope of the above warranty or
create any new warranties.
The Consumer Guarantees Act 1993 shall not apply to the software when it is acquired for business purposes.
This warranty will be governed and construed in accordance with the laws of New Zealand.

NOTICE

This software License and Warranty applies ONLY to ZooCADA-Mod customisations written
for end user customers by Adena Scientific Ltd.

ZooCADA system users familiar with Campbell Scientific datalogger programming may
choose to write their own customisations using the ZooCADA-Mod module.  User created
customisations shall be used ONLY on ZooCADA stations licensed to that user, and MUST
NOT be distributed to any third parties by any means whatsoever.

Adena Scientific Ltd shall NOT be responsible in any way whatsoever for the malfunction of
any ZooCADA station(s) that result from user created modifications.



Limited Warranty

This Page Intentionally Left Blank



Contents

System Overview............................................................................................................................................................1
Program Features...........................................................................................................................................................2

Sensor Measurements ...............................................................................................................................................................................2
Control Port I/O............................................................................................................................................................................................2
Switched 12V DC Outputs........................................................................................................................................................................2
General.............................................................................................................................................................................................................2

The Customisation File ..................................................................................................................................................3
Supported Datalogger Versions...................................................................................................................................................................4

CR310 ...............................................................................................................................................................................................................4
CR1000X ..........................................................................................................................................................................................................4

File Naming...........................................................................................................................................................................................................4
File Name........................................................................................................................................................................................................4
Filename Extension .....................................................................................................................................................................................4

Enabling The Customisation File..................................................................................................................................................................5
Editing The Customisation File .....................................................................................................................................................................5
Demonstration Rainfall Program .................................................................................................................................................................6

Constants Section...........................................................................................................................................................7
Constants...............................................................................................................................................................................................................8
Example..................................................................................................................................................................................................................8

Public Variables Section ................................................................................................................................................9
Public Variables................................................................................................................................................................................................ 10
Example............................................................................................................................................................................................................... 10

Private Variables Section.............................................................................................................................................11
Private Variables .............................................................................................................................................................................................. 12
Example............................................................................................................................................................................................................... 12

Data Tables Section......................................................................................................................................................13
Data Tables ........................................................................................................................................................................................................ 14
Functions And Subroutines......................................................................................................................................................................... 15
Example............................................................................................................................................................................................................... 15

Initialisation Code Section ..........................................................................................................................................17
Initialisation Code ........................................................................................................................................................................................... 18
Example............................................................................................................................................................................................................... 18

Main Code Start Section..............................................................................................................................................19
Program Code .................................................................................................................................................................................................. 20
Time Array.......................................................................................................................................................................................................... 20
Example............................................................................................................................................................................................................... 21

Main Code End Section................................................................................................................................................23
Program Code .................................................................................................................................................................................................. 24
Example............................................................................................................................................................................................................... 24

Call Tables Section .......................................................................................................................................................25
Program Code .................................................................................................................................................................................................. 26
Example............................................................................................................................................................................................................... 26



Contents

Slow Scan Aux Section.................................................................................................................................................29
Program Code .................................................................................................................................................................................................. 30
Example............................................................................................................................................................................................................... 30

Slow Scan Code Section...............................................................................................................................................31
Program Code .................................................................................................................................................................................................. 32
Example............................................................................................................................................................................................................... 32

Installation Notes.........................................................................................................................................................33
Templates for Record Keeping ...................................................................................................................................35



System Overview

Copyright © 2024, Adena Scientific Limited Page 1

System Overview
The ZooCADA system provides a range of stations that are purpose designed to cater to a wide variety of typical
applications at zoological facilities.  Some customers may require additional sensors, data processing and/or
datalogging to meet their specific needs and in many cases these requirements can be accommodated using spare
I/O capacity on a datalogger that is running one of the ZooCADA system programs.
Adding software code into ZooCADA station programs to support customisation requests is extremely unwise as it
creates disparate station programs that cannot be maintained within standardised ZooCADA quality control and
periodic maintenance systems.  The ZooCADA-Mod software module provides a means by which stations can be
customised in a carefully structured manner without changing the station program itself.
Each ZooCADA station program has been developed with specific API points that link to the ZooCADA-Mod
customisation file sections.  Most software code that can be written into a datalogger program can be written into
the ZooCADA-Mod  customisation file and will operate in exactly the same way as it would if it had been written
into the ZooCADA station program itself.  Keeping the customisation code in its own file allows it to persist, in the
same way the station constants and setpoints do, anytime the station program is updated.
The code written into the ZooCADA-Mod customisation is the same CR Basic code that is used for all the
datalogger programming and is subject to exactly the same syntax rules.  Likewise the same limitations apply in so
far as the program code and the customisation code collectively must execute within the datalogger scan interval,
which on all ZooCADA stations is two seconds, and the datalogger’s available program memory and data storage
memory.
Examples of possible station customisations are:

Using the enclosure soil water content measurement to switch a spare control port on and off to operate a
valve that prevents an irrigation system over watering the enclosure soil.
Adding a tipping bucket rain gauge to a spare pulse input to measure and record the hourly and daily rainfall.
Adding a solar pyranometer to an SDI-12 bus port to measure and record the hourly and daily solar radiation.

An empty ZooCADA-Mod customisation module is supplied with each ZooCADA station program and is disabled
by default in the Station Constants file.  The customisation file can be enabled and used when required and does
not need to be loaded into the station unless it is enabled.



System Overview

Page 2 Copyright © 2024, Adena Scientific Limited

Program Features

Sensor Measurements
 SDI-12 sensors are recommended as there is ample address space available on all ZooCADA stations.
 Pulse output sensors such as wind speed and rainfall supported on CR1000X stations.
 Analog output sensors up to 4 on ZooLog, 1 on ZooLife, 1 on ZooLab, none on other stations.

Control Port I/O
 Configurable as Outputs or Inputs, 1 on ZooLog, up to 2 on ZooLife, up to 2 on ZooLab stations.

See Campbell Scientific datalogger specifications for logic high/low voltage specifications.

Switched 12V DC Outputs
 Suitable for relay control, 1 on ZooLog, up to 2 on ZooLife, up to 2 on ZooLab stations.

See Campbell Scientific datalogger specifications for output current limits.

Calculations and Data Processing
 Calculate derivative values from existing or new measurements.
 Apply conditional logic to measurements to switch datalogger outputs on/off.

Amount of additional processing that can be added depends on available program memory.

Data Logging
 Add data tables to record data from additional sensors.
 Add data tables to record data from calculated derivative values.

Amount of additional data that can be logged depends on available data storage memory.

General
 Define constants.
 Define public variables.
 Define private variables.
 Define and call data tables.
 Insert code into the program startup initialisation.
 Insert code into the beginning of the program scan immediately after timers.
 Insert code into the end of the program scan immediately before data logging.
 Insert code into the end of the program immediately after data logging.
 Insert code into slow scan Aux flag controlled section for SDI-12 sensor measurements.
 Insert code into slow scan uncontrolled section so customisation code can control it.

ZooCADA is a modular control and data acquisition system.  Each station can operate standalone or as an integral
part of a fully networked, zoo-wide, system with various stations performing different tasks.  Using our modular
approach, up to 4000 stations, distributed over any geographic area, can be networked provided that network
connectivity (typically the site’s IP computer network) is available at each station.
Adena Scientific believes that accuracy and reliability are paramount requirements of any system used in
applications that support animal welfare, so we purpose designed our ZooCADA system to meet zoological needs,
and built it to run on dataloggers manufactured by Campbell Scientific in the USA and available worldwide.



The Customisation File

Copyright © 2024, Adena Scientific Limited Page 3

The Customisation File



The Customisation File

Page 4 Copyright © 2024, Adena Scientific Limited

The customisation file contains all the customisations for a station in the ZooCADA system.  All ZooCADA stations
support the application of customisations using this file.  There is only one customisation file per station and the
empty template file is exactly the same, except for its filename extension, for all ZooCADA stations.
The empty customisation file template is shown in the image above.
Each ZooCADA station program is supplied complete with a customisation file template which is set to disabled in
the Station Constants file by default.  If the customisation file is enabled while the template file is empty, the station
program will still run normally.
When the customisation file is disabled in the Station Constants file the customisation file does not need to be
loaded into the datalogger but it can be left there for convenience.
When adding custom code to the file it is imperative that the programmer remains aware of the section of the
station program their customisation code is being inserted into as each section serves a different purpose.  Each
section will be discussed separately in the following chapters.

Supported Datalogger Versions
The ZooCADA-Mod customisation file utilises datalogger instructions that Campbell Scientific has recently
included in the datalogger operating systems.  The ZooCADA-Mod customisation file cannot be used on
dataloggers with earlier operating system versions than those listed below.  In most cases the datalogger
operating systems can be easily upgraded to the latest versions if desired.

CR310
Support is included from OS 11.0  release date 21-02-2024.

CR1000X
Support is included from OS 7.0  release date 16-11-2023.

File Naming
The empty customisation file is named the same for all stations, except for the filename extension, which differs
to identify the target datalogger model in the same way the station program files do.

File Name
The customisation file is named STATION_CUSTOMISATIONS and must always be present in the datalogger,
even if it’s just the empty template, when it is enabled in the Station Constants file.  Do not rename this file.

Filename Extension
The customisation filename extension identifies the target datalogger model range as follows:

For CR310 dataloggers the extension is .CR300.
For CR1000X dataloggers the extension is .CR1X.

Using datalogger specific filename extensions enables the use of datalogger program instructions that are
specific to a datalogger model range while still maintaining code portability across all stations of that
datalogger model.  The same file with datalogger specific instructions changed where necessary can then be
given the filename extension for a different datalogger model so the same customisation can be used for
additional datalogger models.



The Customisation File

Copyright © 2024, Adena Scientific Limited Page 5

Enabling The Customisation File
The customisation file is enabled by setting the constant CUSTOM_FILE to True in the STATION_CONSTANTS file
and disabled by setting the constant CUSTOM_FILE to False.
When the customisation file is enabled, the CR Basic compiler inserts the customisation code into the datalogger
program and compiles it just as if the code had been written directly into the datalogger program.
After loading an updated customisation file and/or an updated station constants file to the datalogger, the
updated files have to be compiled into the datalogger program by the datalogger to make them active.  The
datalogger always recompiles its program file(s) when the datalogger is restarted so to cause a recompile and
thus include the updated customisations file, manually stop the datalogger program and then restart it using
either the functions in the File Control window of the LoggerNet Connect utility, or the functions provided by
File Control page in the datalogger Web Interface.  The Web Interface functions are only available to users
logged on with administrator privileges.

Editing The Customisation File
The customisation file can be edited in the same way as any other datalogger program using the CR Basic editor
in LoggerNet.
We recommend keeping a folder on a computer, use the station name for the folder name, and inside that
folder keep a second folder named “Test”.  The station named folder should hold a copy of the files currently
operating in the station.  The following example is for the ZooLife program but all other station programs in the
ZooCADA system have the same files, just the program name portion of the filename changes.
There should be four files in the station named folder:

STATION_CONSTANTS_ZOOLIFE_R01.CR1X
STATION_SETPOINTS_ZOOLIFE_R01.CR1X
STATION_CUSTOMISATIONS.CR1X
ZOOLIFE_R01.CR1X

If the program has been compiled in the CR Basic editor a table definitions file will also be present:
ZOOLIFE_R01.TDF

Copy all these files to the Test folder.  Make the desired changes by editing the file(s) in the Test folder and fully
test the program prior to deployment.  Once deployed, copy the deployed files into the station named folder.
This way there are always two copies of the files on the computer, the “live” program as currently deployed and
the “test” version ready for editing.
To edit the STATION_CUSTOMISATIONS.CR1X file, navigate to the Test folder and open the file in the CR Basic
editor.  Make the desired changes and save the file.
Open the STATION_CONSTANTS_ZOOLIFE_R01.CR1X file and change the constant from  CUSTOM_FILE = False
to CUSTOM_FILE = True  and save the file.
To compile the program, open the ZOOLIFE_R01.CR1X file in the editor and use the Save and Compile selection
from the menus.  The compiler will compile the program and display any errors that need to be corrected.
When complied the STATION_CUSTOMISATIONS.CR1X file sections are automatically inserted into the main
station program, in this example ZOOLIFE_R01.CR1X.
Once an error-free compile is achieved in the CR Basic editor, the files can be loaded into a datalogger for
testing.  Using the LoggerNet Connect utility, connect to the datalogger then click the File Control button on the
tool bar.  Check if any program is running and stop it if necessary.



The Customisation File

Page 6 Copyright © 2024, Adena Scientific Limited

Next click on the Send button on the toolbar, navigate to the Test folder on the computer and select the files to
be loaded into the datalogger.  First load the Constants, Setpoints, and Customisations files to the datalogger,
then load the program file to the datalogger.

IMPORTANT: All four of the CR1X files, or CR300 files, as appropriate, must be present in the datalogger in
order for the datalogger to compile and run the program.

Once all these files are loaded into the datalogger, click on the program file ZOOLIFE_R01.CR1X in this example,
then click the Run Options button on the toolbar.  Make sure the Run Now and Run on Power Up checkboxes
are selected and click the OK button.  The datalogger will compile the program into its memory and run it.
Carry out whatever tests are necessary to prove the customisations are working correctly, then the program and
the customisations are ready to be deployed.

Demonstration Rainfall Program
In the following chapters a STATION_CUSTOMISATIONS.CR1X file written to add a tipping bucket rain gauge to
the ZooLife program is explored section by section to demonstrate the methodology used to create a working
customisation.
Each chapter will begin with a listing of the file with the section to be discussed highlighted and subsequent
pages will discuss the programming requirements.



Constants Section

Copyright © 2024, Adena Scientific Limited Page 7

Constants Section



Constants Section

Page 8 Copyright © 2024, Adena Scientific Limited

The constants section begins with the complier instruction:
#If Section = “Constants” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “Constants” in the main program.
All customisation constants must be declared in this section.

Constants
Constants are simply values that are defined at program startup and do not change during program execution.
The keyword Const is used to define a constant.
Once a value is assigned to a constant, which must be done as part of the Const declaration, the programmer
can simply type the constant name into the program each time the value is needed, instead of the value itself.
The use of constants makes the program easier to follow and easier to modify.
Constants can be type defined as numeric, logical, or string values.
Good practice is to name constants with all uppercase characters so they are clearly differentiated from
variables. Separate multiple words in a constant name with the underscore character, and, except for simple
decimal values, define the type.  For example:

Const MY_FLOAT = 21.45 - (Default type,  Single-precision floating point number)
Const MY_DOUBLE As Double = 12.345678 - (Double-precision floating point number)
Const MY_LONG As Long = 123456789 - (32-bit signed integer.)
Const MY_BOOL As Boolean = True - (Boolean, False=0, True = -1)
Const MY_STRING As String = “Hello” - (Null-terminated array of characters)

The compiler will attempt to determine the type for any constants for which a type is not defined.  Note that not
all data types types are supported by all datalogger models.

Example
In the example customisation file there is one constant defined as follows:

Const BUCKET = 0.2

In this example the constant BUCKET is the bucket capacity in millimetres for the tipping bucket rain gauge and
it is set to 0.2 millimetres.  The value could have been entered directly into the Pulsecount() instruction but a
constant was used for clarity when reading the program.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file there is one comment in the constants section as follows:

'Tipping bucket rain gauge calibration.



Public Variables Section

Copyright © 2024, Adena Scientific Limited Page 9

Public Variables Section



Public Variables Section

Page 10 Copyright © 2024, Adena Scientific Limited

The public variables section begins with the complier instruction:
#If Section = “PublicVars” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “PublicVars” in the main program.
All customisation public variables must be declared in this section.

Public Variables
Variables are values that change during program execution.  Public variables are those that are displayed in the
Public data table and can be viewed using the datalogger’s Web Interface or the LoggerNet Connect utility.
The keyword Public is used to define public variables.
Public variables can be type defined as numeric, logical, or string values and an initial value for the variable can
be set as part of the variable definition.  Variable names must start with a letter, an underscore, or a dollar sign
and are not case sensitive.
Good practice is to name variables using Pascal case notation.  In Pascal case the first letter of each word is in
uppercase and all the other letters are in lower case, with all the words joined together with no spaces.  With
public variables, except for simple decimal values, always define the type.  For example:

Public MyFloat = 21.45 - (Default type,  Single-precision floating point number)
Public MyDouble As Double = 12.345678 - (Double-precision floating point number)
Public MyLong As Long = 123456 - (32-bit signed integer.)
Public MY_BOOL As Boolean = True - (Boolean, False=0, True = -1)
Public MyString As String = “Hello” - (Null-terminated array of characters)

Note that not all data types types are supported by all datalogger models.

Example
In the example customisation file there are two public variables defined as follows:

Public RainHour = 0
Public RainDay = 0

In this example the variable RainHour holds the accumulated total rainfall for the current hour and the variable
RainDay holds the accumulated rainfall for the current day.  Both values will be displayed in the Public data
table.  The customisations public variables are always displayed at the bottom of the Public data table.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file there is one comment in the constants section as follows:

'Rainfall public variables for display.



Private Variables Section

Copyright © 2024, Adena Scientific Limited Page 11

Private Variables Section



Private Variables Section

Page 12 Copyright © 2024, Adena Scientific Limited

The private variables section begins with the complier instruction:
#If Section = “PrivateVars” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “PrivateVars” in the main program.
All customisation private variables must be declared in this section.

Private Variables
Variables are values that change during program execution.  Private variables are not displayed in the Public
data table and cannot be viewed using the datalogger’s Web Interface or the LoggerNet Connect utility.
The keyword Private is used to define private variables.
Private variables can be type defined as numeric, logical, or string values and an initial value for the variable can
be set as part of the variable definition.  Variable names must start with a letter, an underscore, or a dollar sign
and are not case sensitive.
Good practice is to name variables using Pascal case notation.  In Pascal case the first letter of each word is in
uppercase and all the other letters are in lower case, with all the words joined together with no spaces.  As with
private variables, except for simple decimal values, always define the type.  For example:

Private MyFloat = 21.45 - (Default type,  Single-precision floating point number)
Private MyDouble As Double = 12.345678 - (Double-precision floating point number)
Private MyLong As Long = 123456 - (32-bit signed integer.)
Private MY_BOOL As Boolean = True - (Boolean, False=0, True = -1)
Private MyString As String = “Hello” - (Null-terminated array of characters)

Note that not all data types types are supported by all datalogger models.

Example
In the example customisation file there is one public variable defined as follows:

Private RainTips = 0

In this example the variable RainTips holds the number of bucket tips multiplied by the constant BUCKET that is
read from the pulse counter each datalogger program scan.  ZooCADA stations scan every two seconds so
unless it is raining extremely hard this value will be 0.0 most scans and will change to 0.2 if the bucket has
tipped since the last scan.  If the bucket tipped twice since the last scan the value would be 0.4, etc.  This value is
added to the total rainfall for the current hour RainHour and the current day RainDay for later logging.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file there is one comment in the constants section as follows:

'Rainfall private variables.



Data Tables Section

Copyright © 2024, Adena Scientific Limited Page 13

Data Tables Section



Data Tables Section

Page 14 Copyright © 2024, Adena Scientific Limited

The data tables section begins with the complier instruction:
#If Section = “DataTables” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “DataTables” in the main program.
All customisation data tables, functions and subroutines must be defined in this section.

Data Tables
Data tables are used to store the data that is logged by the datalogger.  A data table needs to be defined for
each desired data set.  Normally data tables store the data at regular time intervals such as hourly or daily, but
event driven data logging can also be programmed.
Data in a data table is arranged into records (rows of values) and columns (the values in the record)
The DataTable(Name, TrigVar, Size) instruction is the first line of a data table definition. It specifies the Name for
the data file, enables or disables the data table with the TrigVar trigger variable, and sets the Size number of
records (rows of data) that can be stored in the table.  TrigVar can be a program variable which is set True to
enable the data table or False to disable the data table.  If True is entered as the TrigVar the data table is always
enabled.  If -1 is entered for the number of rows, the datalogger automatically determines a size that will evenly
allocate the amount of available data storage memory to all the tables that have -1 for their size.  The
dataloggers use a ring memory system as the default data storage so that when a data table is full, the newest
data overwrites the oldest data in the table.  This behaviour can be changed programmatically if desired.
The DataInterval(TintoInt, Interval, Units, Lapses) instruction is the second line of a data table definition.  It
defines the interval at which the data is to be logged.  The interval is specified as the time into a time interval,
such as 0 units into a 60 unit interval, with a range of units available including seconds, minutes, hours, and days.
The final parameter is the lapses setting.  A lapse is any discontinuity in the records’ time intervals.  Entering 0
for the Lapses parameter forces every record to include a record number and timestamp, which uses an
additional 16 bytes per record.  In ZooCADA station programs lapses is always set to 0.  If data storage space is
not an issue, this option should be used.  Please refer to the Campbell Scientific CR Basic editor help system for
detailed information on the operation of the lapses setting.
The third and subsequent lines, before the EndTable instruction, define a column in the data table using output
processing instructions.
Output processing instructions are in the form of Sample(Reps, Source, DataType) with some having additional
parameters.  Output processing instructions include Average(), Minimum(), Maximum(), and Totalize().  Each
output processing instruction determines the Reps (swath of variables), starting with the variable Source, that
will be logged and the DataType.  The data type is typically FP2 which is a Campbell Scientific 2-byte floating
point data type that is memory efficient and suits a wide range of common measurement values.  Sometimes a
higher precision is needed, such as for barometric pressure, where ZooCADA uses the IEEE4 data type, a 4-byte
value.  It is important to match the data types in the data tables to the data types of the variables that are being
logged.  Each output processing instruction should be entered on its own line in the program code.
The final line in every data table definition is the EndTable() instruction which marks the end of the data table
definition.
Several data tables may be defined in this section as necessary dependant upon the amount of available data
storage memory in the datalogger.



Data Tables Section

Copyright © 2024, Adena Scientific Limited Page 15

Functions And Subroutines
In addition to data tables, functions and subroutines can be defined in this section.  These should be placed
after any data tables that are programmed.
Functions and subroutines are programmed in much the same way.  Both structures accept arguments (values
passed to the function or subroutine) from variables and constants on the program.  The most significant
difference is that functions can return a value whereas subroutines cannot.
The first line of a function definition is in the form Function Name(Arg1, Arg2, Arg3,...) and similarly for
subroutines Sub Name ( Arg1, Arg2, Arg3,...).  In both cases Name is the name that will be used to call the
function or subroutine from the program and Arg1, Arg2, Arg3, …  are variables that are created by, and belong
to, the function or subroutine that accept input values from variables in the program.  Additional variables for
processing purposes can be declared within a function or subroutine and remain private to the function or
subroutine.
The second and subsequent lines of a function or subroutine, before the EndFunction or EndSub instruction, are
the programming instructions that the function or subroutine will execute.
The full range of CR Basic program instructions, that are supported by the datalogger model in use, can be used
for functions and subroutines.
Utilising this flexibility to create customisations for the ZooCADA station program requires considerable care to
ensure that customisations do not inadvertently conflict with the programming of the ZooCADA station
program as serious program errors can be created.
Please refer to the Campbell Scientific Product Manual (for the datalogger model being programmed), the
LoggerNet CR Basic Editor documentation, and the ZooCADA Reference Manual (for the station program)
regarding the capabilities and programming requirements of the systems being programmed.
The EndFunction is the final line of a function and EndSub is the final line of a subroutine.  These keywords mark
the end of the definition.

Example
In this example the first data table is defined as follows:

DataTable(RAIN_60M, True, -1)
      DataInterval(0, 60, Min, 0)

Sample(1, RainHour, FP2)
EndTable

In this example only a single data value, the hourly rainfall, is being logged but frequently there will be several
values specified.  All the output processing instructions are placed between the DataInterval() instruction and
the EndTable instruction, with each output instruction entered on its own line.
The first line defines the data file name as RAIN-60M (for 60 minute rainfall), the data table is set to True (always
enabled), and the size is set to -1 so the datalogger automatically determines the table size.
The second line defines the DataInterval() which in this case is 0 minutes into a 60 minute interval.  The last zero
is the lapses parameter which is set to zero so each record is time stamped.
The third line specifies the first value in the record as an instantaneous Sample, with 1 repetition (sample one
variable) beginning with the variable RainHour, with a data type of FP2.



Data Tables Section

Page 16 Copyright © 2024, Adena Scientific Limited

In this example the second data table is defined as follows:
DataTable(RAIN_24H, True, -1)
      DataInterval(0, 1440, Min, 0)

Sample(1, RainDay, FP2)
EndTable

The format of the second data table is identical to the first but note the different parameters.  The filename is
set to RAIN_24H (for 24 hour rainfall), the data interval is set to 0 minutes into a 1440 minute interval (daily at
midnight) and the variable being sampled is RainDay which is the daily rainfall total accumulator.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file there is a comment on the line above each DataTable definition to indicate
what data the data table contains:  The first data table has the comment:

'Log rainfall hourly data.
And the second data table has the comment:

'Log rainfall daily data.
In addition to data tables, functions and subroutines can be defined in this section.  These should be
programmed after any data tables are programmed.



Initialisation Code Section

Copyright © 2024, Adena Scientific Limited Page 17

Initialisation Code Section



Initialisation Code Section

Page 18 Copyright © 2024, Adena Scientific Limited

The initialisation code section begins with the complier instruction:
#If Section = “InitCode” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “InitCode” in the main program.
All customisation code initialisation routines must be defined in this section.

Initialisation Code
Initialisation code is code that is run once only during program startup to ensure an orderly program startup.
By default numeric variables are initialised to zero when they are defined and strings are initialised as empty
strings which may cause program errors unless they are assigned an initial value at startup.  Often, variables can
simply be given an appropriate value when the variable is declared but sometimes it is necessary to do
something more complex which is best achieved with initialisation code.
Most of the CR Basic program instructions, that are supported by the datalogger model in use, can be used in
initialisation code, so things like using a loop to initialise an array are possible.
Utilising this flexibility to create customisations for the ZooCADA station program requires considerable care to
ensure that customisations do not inadvertently conflict with the programming of the ZooCADA station
program as serious program errors can be created.

Example
In this example there is no initialisation code needed so the initialisation section is simply left empty.
Of course the unneeded section could be completely deleted from the customisation file but we recommend
leaving it in place, as shown, because this makes it easier to maintain the customisation file if, for example,
someone wishes to add another instrument to the customisation and the associated instrument processing does
need some initialisation code.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file there is a comment in the empty initialisation code section simply reminding
us that it is empty on purpose, as follows:

'No Initialisation needed for rainfall program.



Main Code Start Section

Copyright © 2024, Adena Scientific Limited Page 19

Main Code Start Section



Main Code Start Section

Page 20 Copyright © 2024, Adena Scientific Limited

The main code start section begins with the complier instruction:
#If Section = “MainCodeStart” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “MainCodeStart” in the main program.
This section is inserted near the beginning of the datalogger scan immediately after the timers that control the
various functions of the main program and the RTC (realtime clock) has been read into the rTime() array.  It is the
best place in the program to insert timers that set and/or reset flags to control the execution of blocks of program
code, measurement instructions for sensors that can be read quickly, and processing instructions for those sensor
measurements.  General calculations and other processing can also be included at this point.

Program Code
The full range of CR Basic program instructions, that are supported by the datalogger model in use, can be used
in this section of code.
When creating program code, it is important to consider the time that the CPU will take to execute the
instructions.  ZooCADA station programs all have a scan rate of two seconds.  Correct execution of the program,
requires that the entire program has an execution time that is less than the scan rate.  If the execution time
exceeds the scan rate it will result in missed scans.  Execution times vary depending on the instructions that are
executed in any given scan so scans that log data or measure sensors are likely to take longer than most other
scans, especially the scan that carries out the midnight logging during which several data tables are written to.
Utilising this flexibility to create customisations for the ZooCADA station program requires considerable care to
ensure that customisations do not inadvertently conflict with the programming of the ZooCADA station
program as serious program errors can be created.
Please refer to the Campbell Scientific Product Manual (for the datalogger model being programmed), the
LoggerNet CR Basic Editor documentation, and the ZooCADA Reference Manual (for the station program)
regarding the capabilities and programming requirements of the systems being programmed.

Time Array
The rTime() array can be read by customisation code, if necessary, using the following aliases rather than
referencing the array itself so the resultant code is easier to follow.  Never write to this array, doing so will cause
the timing calculations throughout the main program to fail.

rTime(1) - alias = Year
rTime(2) - alias = Month
rTime(3) - alias = DOM
rTime(4) - alias = Hour
rTime(5) - alias = Minute
rTime(6) - alias = Second
rTime(7) - alias = uSecond
rTime(8) - alias = WeekDay
rTime(9) - alias = DayOfYear



Main Code Start Section

Copyright © 2024, Adena Scientific Limited Page 21

Example
In this example a tipping bucket rain gauge is measured and processed every scan:

PulseCount(RainTips,1,P2,1,0,BUCKET,0)
RainHour += RainTips
RainHour = Round(RainHour,1)
RainDay += RainTips
RainDay = Round(RainDay,1)

The first line reads pulse counter P2 and places the tip count into the variable RainTips after multiplying the raw
counter value by the value of the constant BUCKET, which is declared in the constants section with a value of 0.2,
the rain gauge tipping bucket size in millimetres of rainfall.
The second line of code adds the value of the RainTips variable to the hourly rainfall accumulator RainHour
variable.
The third line of code applies the rounding instruction Round() to the RainHour variable to round it to one
decimal place.  It can be desirable to use rounding instructions on floating point math processing to remove any
additional decimal places that sometimes result when floating point math operations are carried out.  It is not
necessary to do this rounding but it is a nice piece of housekeeping that helps keep logged and/or displayed
data tidy.
The fourth line of code adds the value of the RainTips variable to the hourly rainfall accumulator RainDay
variable.
The fifth line of code applies the rounding instruction to round the RainDay variable to one decimal place as was
done for the hourly rainfall accumulator variable.
The variables RainHour and RainDay are declared in the public variables section so are displayed at the bottom
of the Public data table after all the standard ZooCADA program public variables.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file the comment above the measurement instruction informs as to the purpose of
the PulseCount() instruction, as follows.

'Read pulse count from the rain gauge.
Another comment above the rainfall processing lines informs as to their purpose, as follows:

'Increment rainfall totals.
These brief comments can help anyone who has to maintain the code in the future understand what the author
of the code intended.  It is not necessary to comment every line of code and brevity is usually best but
sometimes a complex code fragment may benefit from an extra line or two of comment at its beginning.



Main Code Start Section

Page 22 Copyright © 2024, Adena Scientific Limited

This Page Intentionally Left Blank



Contents

Main Code End Section



Contents

The main code end section begins with the complier instruction:
#If Section = “MainCodeEnd” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “MainCodeEnd” in the main program.
This block of code is inserted near the end of the datalogger scan, immediately before the CallTable() instructions
for the ZooCADA program data tables.  All of the main program variables are current at this point in the program
execution making this is the best place to insert code for customisation calculations or processing that needs to be
completed prior to the output data tables being called.

Program Code
The full range of CR Basic program instructions, that are supported by the datalogger model in use, can be used
in this section of code.  Any of the variables displayed in the Public data table can be read and used to calculate
derivative values, which can then be logged.  Code to set/reset a control port or switch on/off a 12V DC output
in response to a variable can also be added to this section.
When creating program code, it is important to consider the time that the CPU will take to execute the
instructions.  ZooCADA station programs all have a scan rate of two seconds.  Correct execution of the program,
requires that the entire program has an execution time that is less than the scan rate.  If the execution time
exceeds the scan rate it will result in missed scans.  Execution times vary depending on the instructions that are
executed in any given scan so scans that log data or measure sensors are likely to take longer than most other
scans, especially the scan that carries out the midnight logging during which several data tables are written to.
Utilising this flexibility to create customisations for the ZooCADA station program requires considerable care to
ensure that customisations do not inadvertently conflict with the programming of the ZooCADA station
program as serious program errors can be created.
Please refer to the Campbell Scientific Product Manual (for the datalogger model being programmed), the
LoggerNet CR Basic Editor documentation, and the ZooCADA Reference Manual (for the station program)
regarding the capabilities and programming requirements of the systems being programmed.

Example
In this example there is no code needed in this section so the section is simply left empty.
Of course the unneeded section could be completely deleted from the customisation file but we recommend
leaving it in place, as shown, because this makes it easier to maintain the customisation file if, for example,
someone wishes to add some code in the future.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file there is a comment in the empty initialisation code section simply reminding
us that it is empty on purpose, as follows:

'Nothing needed here for rainfall program.



Call Tables Section

Copyright © 2024, Adena Scientific Limited Page 3

Call Tables Section



Call Tables Section

Page 4 Copyright © 2024, Adena Scientific Limited

The call tables section begins with the complier instruction:
#If Section = “CallTables” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “CallTables” in the main program.
This block of code is inserted at the end of the datalogger scan immediately after the CallTable() instructions for the
ZooCADA program data tables.  Customisation data tables must be called in this section and any code to reset
counter or accumulator variables after data logging should also be placed in this section.

Program Code
Any CallTable() instructions should be the first lines in this section, with any other code, such as counter and
accumulator resets, placed after the CallTable() instructions.
The full range of CR Basic program instructions, that are supported by the datalogger model in use, can be used
in this section of code.
When creating program code, it is important to consider the time that the CPU will take to execute the
instructions.  ZooCADA station programs all have a scan rate of two seconds.  Correct execution of the program,
requires that the entire program has an execution time that is less than the scan rate.  If the execution time
exceeds the scan rate it will result in missed scans.  Execution times vary depending on the instructions that are
executed in any given scan so scans that log data or measure sensors are likely to take longer than most other
scans, especially the scan that carries out the midnight logging during which several data tables are written to.
Utilising this flexibility to create customisations for the ZooCADA station program requires considerable care to
ensure that customisations do not inadvertently conflict with the programming of the ZooCADA station
program as serious program errors can be created.
Please refer to the Campbell Scientific Product Manual (for the datalogger model being programmed), the
LoggerNet CR Basic Editor documentation, and the ZooCADA Reference Manual (for the station program)
regarding the capabilities and programming requirements of the systems being programmed.

Example
In this example the two rainfall data tables, defined in the data tables section, are called and then the
accumulators are reset based on the hourly and daily timing.

CallTable(RAIN_60M)
CallTable(RAIN_24H)

If IfTime(0,60,Min) Then
    RainHour = 0
EndIf
If IfTime(0,1440,Min) Then
    RainDay = 0
EndIf



Call Tables Section

Copyright © 2024, Adena Scientific Limited Page 5

The first line of code calls the RAIN_60M data table.
The second line of code calls the RAIN_24H data table.
The third line of code is a conditional statement with an IfTime() instruction that is set to 0 minutes into a 60
minute interval, which causes it to return True every hour on the hour (hourly).  Its placement in the program
ensures the rainfall values have been logged before this block of code is executed.
The fourth line of code is within the hourly conditional block so it is only executed in a scan when the
conditional statement is true, at which time it resets the hourly rainfall accumulator to zero.
The fifth line of code is the EndIf keyword which marks the end of the hourly conditional code block.
The sixth, seventh, and eighth lines of code are for a second conditional code block that operates in exactly the
same way as the first except that the IfTime() instruction is set to 0 minutes into a 1440 minute interval, which
causes it to return True once every day at midnight, and the accumulator being reset is the RainDay variable.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file the first comment simply identifies the start of the CallTables() instructions:

'Call rainfall data tables.
The next comment informs as to the purpose of the first conditional code block:

'Reset hourly rainfall accumulator after logging.
The last comment in this section informs as to the purpose of the second conditional code block:

'Reset daily rainfall accumulator after logging.
These brief comments can help anyone who has to maintain the code in the future understand what the author
of the code intended.  It is not necessary to comment every line of code and brevity is usually best but
sometimes a complex code fragment may benefit from an extra line or two of comment at its beginning.



Call Tables Section

Page 6 Copyright © 2024, Adena Scientific Limited

This Page Intentionally Left Blank



Contents

Slow Scan Aux Section



Contents

The slow scan aux section begins with the complier instruction:
#If Section = “SlowScanAux” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “SlowScanAux” in the main program.
This block of code is inserted into the portion of the slow scan loop that is controlled by the five minute timer.  This
is the auxiliary sensor code block.  Customisation code that reads SDI-12 digital sensors, or other devices that take
longer time periods to read and processes should be placed in this section.

Program Code
The full range of CR Basic program instructions, that are supported by the datalogger model in use, can be used
in this section of code.
This slow scan loop runs asynchronously of the main program scan which prevents the main program scan
execution being delayed by the time required for operations such as communications to digital sensors.  Any
measurement values obtained in  this section should be passed back to the main program scan for logging.
When creating program code, it is important to consider the time that the CPU will take to execute the
instructions.  ZooCADA station programs all have a scan rate of two seconds.  Correct execution of the program,
requires that the entire program has an execution time that is less than the scan rate.  If the execution time
exceeds the scan rate it will result in missed scans.  Execution times vary depending on the instructions that are
executed in any given scan so scans that log data or measure sensors are likely to take longer than most other
scans, especially the scan that carries out the midnight logging during which several data tables are written to.
Utilising this flexibility to create customisations for the ZooCADA station program requires considerable care to
ensure that customisations do not inadvertently conflict with the programming of the ZooCADA station
program as serious program errors can be created.
Please refer to the Campbell Scientific Product Manual (for the datalogger model being programmed), the
LoggerNet CR Basic Editor documentation, and the ZooCADA Reference Manual (for the station program)
regarding the capabilities and programming requirements of the systems being programmed.

Example
In this example there is no code needed in this section so the section is simply left empty.
Of course the unneeded section could be completely deleted from the customisation file but we recommend
leaving it in place, as shown, because this makes it easier to maintain the customisation file if, for example,
someone wishes to add some code in the future.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file there is a comment in the empty initialisation code section simply reminding
us that it is empty on purpose, as follows:

'Nothing needed here for rainfall program.



Slow Scan Code Section

Copyright © 2024, Adena Scientific Limited Page 3

Slow Scan Code Section



Slow Scan Code Section

Page 4 Copyright © 2024, Adena Scientific Limited

The slow scan code section begins with the complier instruction:
#If Section = “SlowScanCode” Then

The section ends with the instruction:
#EndIf

The #If and #EndIf instructions are compiler directives which do not form part of the executable program code that
runs in the datalogger, but rather they tell the compiler how the program code should be managed during the
compiling process.  This pair of instructions tells the compiler to include the program code that is contained within
these two instructions at the insertion point named “SlowScanCode” in the main program.
This block of code is inserted into the slow scan loop that runs continuously.  Code inserted into this section must
be controlled by some form or timer or control flag in the main program scan.  Customisation code that for SDI-12
digital sensors and/or other code that needs to run at a custom controlled interval should be placed in this section.

Program Code
The full range of CR Basic program instructions, that are supported by the datalogger model in use, can be used
in this section of code.
This slow scan loop runs asynchronously of the main program scan which prevents the main program scan
execution being delayed by the time required for operations such as communications to digital sensors.  Any
measurement values obtained in  this section should be passed back to the main program scan for logging.
When creating program code, it is important to consider the time that the CPU will take to execute the
instructions.  ZooCADA station programs all have a scan rate of two seconds.  Correct execution of the program,
requires that the entire program has an execution time that is less than the scan rate.  If the execution time
exceeds the scan rate it will result in missed scans.  Execution times vary depending on the instructions that are
executed in any given scan so scans that log data or measure sensors are likely to take longer than most other
scans, especially the scan that carries out the midnight logging during which several data tables are written to.
Utilising this flexibility to create customisations for the ZooCADA station program requires considerable care to
ensure that customisations do not inadvertently conflict with the programming of the ZooCADA station
program as serious program errors can be created.
Please refer to the Campbell Scientific Product Manual (for the datalogger model being programmed), the
LoggerNet CR Basic Editor documentation, and the ZooCADA Reference Manual (for the station program)
regarding the capabilities and programming requirements of the systems being programmed.

Example
In this example there is no code needed in this section so the section is simply left empty.
Of course the unneeded section could be completely deleted from the customisation file but we recommend
leaving it in place, as shown, because this makes it easier to maintain the customisation file if, for example,
someone wishes to add some code in the future.
It is a good idea to add comments in the code to help make the code easy to follow.  Comments can be entered
on a line of their own, or at the end of a line of code.  The comment delimiter is the single quote ( ' ) symbol
which must be placed at the beginning of the comment text.
In the example customisation file there is a comment in the empty initialisation code section simply reminding
us that it is empty on purpose, as follows:

'Nothing needed here for rainfall program.



Installation Notes

Copyright © 2024, Adena Scientific Limited Page 5

Installation Notes
Use these pages to record any notes specific to the site installation or operation.



Installation Notes

Page 6 Copyright © 2024, Adena Scientific Limited



Templates for Record Keeping

Copyright © 2024, Adena Scientific Limited Page 7

Templates for Record Keeping
The following pages are intended to assist users with record keeping.
Good records are essential for audit, research and maintenance purposes. We recommend that users keep an
ongoing file of all system settings in a manner that is appropriate to their business operations.
Each time settings are changed, a new record of the settings should be created and added to the file. Previous
records should be retained when new records are added.  This will provide an auditable trail of all setting changes
that can assist research with site specific records of what works well for the animal species on display at that site.
These records also assist with maintenance. In the event that system settings have to be reinstated after
maintenance work, the correct set of documented settings can be used to complete the reinstatement.
Please photocopy the following pages as needed and use them to create your own record keeping system.



Templates for Record Keeping

Page 8 Copyright © 2024, Adena Scientific Limited

This Page Intentionally Left Blank



Templates for Record Keeping

Copyright © 2024, Adena Scientific Limited

Station Change Log

Station Name: ......................................................................................................   Site ID: .......................

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:



Templates for Record Keeping

Copyright © 2024, Adena Scientific Limited

Station Change Log

Station Name: ......................................................................................................   Site ID: .......................

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:

Date of Change: Change(s) made:

Changed By:


	System Overview
	Program Features
	Sensor Measurements
	Control Port I/O
	Switched 12V DC Outputs
	Calculations and Data Processing
	Data Logging
	General

	The Customisation File
	Supported Datalogger Versions
	CR310
	CR1000X

	File Naming
	File Name
	Filename Extension

	Enabling The Customisation File
	Editing The Customisation File
	Demonstration Rainfall Program

	Constants Section
	Constants
	Example

	Public Variables Section
	Public Variables
	Example

	Private Variables Section
	Private Variables
	Example

	Data Tables Section
	Data Tables
	Functions And Subroutines
	Example

	Initialisation Code Section
	Initialisation Code
	Example

	Main Code Start Section
	Program Code
	Time Array
	Example

	Main Code End Section
	Program Code
	Example

	Call Tables Section
	Program Code
	Example

	Slow Scan Aux Section
	Program Code
	Example

	Slow Scan Code Section
	Program Code
	Example

	Installation Notes
	Templates for Record Keeping

